What is #f(x) = int secx- cscx dx# if #f((5pi)/4) = 0 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Leland Adriano Alejandro Jan 18, 2016 #f(x) = ln((sec x+tan x)/(csc x-cot x))+ ln((sqrt(2) +1)/(sqrt2-1))# Explanation: After integration #f(x)=ln(sec x+tan x)-ln(csc x-cot x)+C# #f((5 pi)/4)=ln abs(sec((5 pi)/4)+tan ((5 pi)/4))-lnabs(csc ((5 pi)/4)-cot ((5 pi)/4))+C=0# #ln abs(-sqrt2+1)-lnabs(-sqrt2-1)+C=0# #C=ln abs(sqrt2+1)-lnabs(1-sqrt2)# #C=ln ((sqrt2+1)/(sqrt2-1))# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1254 views around the world You can reuse this answer Creative Commons License