What is F(x) = int sin2xcos^2x-sinxcos^2x dxF(x)=sin2xcos2xsinxcos2xdx if F(pi) = 1 F(π)=1?

1 Answer
Jan 9, 2017

F(x) = (cos^3x)/3- (cos^4x)/2+11/6F(x)=cos3x3cos4x2+116

Explanation:

Let's calculate the indefinite integral:

int (sin2xcos^2x-sinxcos^2x)dx = int cos^2x(sin2x-sinx)dx (sin2xcos2xsinxcos2x)dx=cos2x(sin2xsinx)dx

Using the identity:

sin2x = 2 sinxcosxsin2x=2sinxcosx

int cos^2x(sin2x-sinx)dx = int cos^2x(2sinxcosx-sinx)dx=int cos^2xsinx(2cosx-1)dxcos2x(sin2xsinx)dx=cos2x(2sinxcosxsinx)dx=cos2xsinx(2cosx1)dx

As sinxdx = -d(cosx)sinxdx=d(cosx)

int cos^2xsinx(2cosx-1)dx = int (cos^2x-2cos^3x)d(cosx) = (cos^3x)/3- (cos^4x)/2+Ccos2xsinx(2cosx1)dx=(cos2x2cos3x)d(cosx)=cos3x3cos4x2+C

Now we determine the constant from:

F(pi) = 1F(π)=1

(cos^3pi)/3- (cos^4pi)/2+C = 1cos3π3cos4π2+C=1

(-1)^3/3-(-1)^4/2 +C = 1(1)33(1)42+C=1

-1/3-1/2 +C =11312+C=1

C = 1+5/6=11/6C=1+56=116

So, finally:

F(x) = (cos^3pi)/3- (cos^4pi)/2+11/6F(x)=cos3π3cos4π2+116