Let's calculate the indefinite integral:
int (sin2xcos^2x-sinxcos^2x)dx = int cos^2x(sin2x-sinx)dx ∫(sin2xcos2x−sinxcos2x)dx=∫cos2x(sin2x−sinx)dx
Using the identity:
sin2x = 2 sinxcosxsin2x=2sinxcosx
int cos^2x(sin2x-sinx)dx = int cos^2x(2sinxcosx-sinx)dx=int cos^2xsinx(2cosx-1)dx∫cos2x(sin2x−sinx)dx=∫cos2x(2sinxcosx−sinx)dx=∫cos2xsinx(2cosx−1)dx
As sinxdx = -d(cosx)sinxdx=−d(cosx)
int cos^2xsinx(2cosx-1)dx = int (cos^2x-2cos^3x)d(cosx) = (cos^3x)/3- (cos^4x)/2+C∫cos2xsinx(2cosx−1)dx=∫(cos2x−2cos3x)d(cosx)=cos3x3−cos4x2+C
Now we determine the constant from:
F(pi) = 1F(π)=1
(cos^3pi)/3- (cos^4pi)/2+C = 1cos3π3−cos4π2+C=1
(-1)^3/3-(-1)^4/2 +C = 1(−1)33−(−1)42+C=1
-1/3-1/2 +C =1−13−12+C=1
C = 1+5/6=11/6C=1+56=116
So, finally:
F(x) = (cos^3pi)/3- (cos^4pi)/2+11/6F(x)=cos3π3−cos4π2+116