What is #F(x) = int (sin2xcos^2x-tanx)dx# if #F(pi/3) = 1 #?

1 Answer
Oct 9, 2016

#F(x) = int (sin2xcos^2x-tanx)dx#

#F(x) = int sin2xcos^2xdx-inttanxdx=I_1-I_2#

where #I_1=int sin2xcos^2xdx and I_2=inttanxdx#

#I_1=int sin2xcos^2xdx#
let #" "cos^2x=u=>-2sinxcosxdx=du=>sin2xdx=-du#

So #I_1=-intudu=-u^2/2=-cos^4x/2#

Again # I_2=inttanxdx=logabs(secx)#

Therefore

#F(x)=I_1-I_2=-cos^4x/2-logabs(secx)+c#

where c = integration constant

again it is given that #F(pi/4)=1#

#F(pi/4)=-cos^4(pi/4)/2-logabs(sec(pi/4))+c#

#=>1=-(1/sqrt2)^4/2-logabs(sqrt2)+c#

#=>1=-1/8-1/2logabs(2)+c#

#=>c=1+1/8+1/2logabs(2)=9/8+1/2logabs(2)#

Hence

#F(x)==-cos^4x/2-logabs(secx)+9/8+1/2logabs(2)#