What is F(x) = int (sin2xcos^2x-tanx)dxF(x)=(sin2xcos2xtanx)dx if F(pi/3) = 1 F(π3)=1?

1 Answer
Oct 9, 2016

F(x) = int (sin2xcos^2x-tanx)dxF(x)=(sin2xcos2xtanx)dx

F(x) = int sin2xcos^2xdx-inttanxdx=I_1-I_2F(x)=sin2xcos2xdxtanxdx=I1I2

where I_1=int sin2xcos^2xdx and I_2=inttanxdxI1=sin2xcos2xdxandI2=tanxdx

I_1=int sin2xcos^2xdxI1=sin2xcos2xdx
let " "cos^2x=u=>-2sinxcosxdx=du=>sin2xdx=-du cos2x=u2sinxcosxdx=dusin2xdx=du

So I_1=-intudu=-u^2/2=-cos^4x/2I1=udu=u22=cos4x2

Again I_2=inttanxdx=logabs(secx)I2=tanxdx=log|secx|

Therefore

F(x)=I_1-I_2=-cos^4x/2-logabs(secx)+cF(x)=I1I2=cos4x2log|secx|+c

where c = integration constant

again it is given that F(pi/4)=1F(π4)=1

F(pi/4)=-cos^4(pi/4)/2-logabs(sec(pi/4))+cF(π4)=cos4(π4)2logsec(π4)+c

=>1=-(1/sqrt2)^4/2-logabs(sqrt2)+c1=(12)42log2+c

=>1=-1/8-1/2logabs(2)+c1=1812log|2|+c

=>c=1+1/8+1/2logabs(2)=9/8+1/2logabs(2)c=1+18+12log|2|=98+12log|2|

Hence

F(x)==-cos^4x/2-logabs(secx)+9/8+1/2logabs(2)F(x)==cos4x2log|secx|+98+12log|2|