What is f(x) = int sqrt(x+3) -x dxf(x)=x+3xdx if f(1)=-4 f(1)=4?

2 Answers
Feb 17, 2017

2/3 (x+3)^(3/2) - x^2 /2 -53/623(x+3)32x22536

Explanation:

f(x)= int sqrt (x+3)dx - int x dx x+3dxxdx

f(x)= 2/3 (x+3)^(3/2) - x^2 /2 +Cf(x)=23(x+3)32x22+C

Given f(1) = -4f(1)=4, we can solve for C

-4= 2/3 (4)^(3/2) -1/2 +C4=23(4)3212+C

-4 = 2/3 2^3 -1/2 +C4=232312+C

C= -4 +1/2 -16/3 = -53/6C=4+12163=536

f(x)=2/3 (x+3)^(3/2) - x^2 /2 -53/6f(x)=23(x+3)32x22536

Feb 17, 2017

f(x) = 2/3(x+3)^(3/2) - 1/2 x^2 - 53/6 f(x)=23(x+3)3212x2536

Explanation:

f(x) = int(sqrt(x+3) - x)dxf(x)=(x+3x)dx

Split the integral into two separate integrals:

f(x) = int(sqrt(x+3) )dx - int(x)dxf(x)=(x+3)dx(x)dx

u-substitution is your best friend
let u = x+3u=x+3
let du = 1 dxdu=1dx
let dx = dudx=du

find the integral by substituting u into the square root and simplify:
f(x) = int(u^(1/2))du -int(x)dxf(x)=(u12)du(x)dx
f(x) = (u^(1/2 + 1))/(3/2) - x^2 / 2 + C f(x)=u12+132x22+C
f(x) = u^(3/2) / (3/2) - 1/2 x^2 + C f(x)=u323212x2+C
f(x) = 2/3u^(3/2) - 1/2 x^2 + C f(x)=23u3212x2+C

Plug x+3 back in for u:

f(x) = 2/3(x+3)^(3/2) - 1/2 x^2 + C f(x)=23(x+3)3212x2+C

plug in f(1)=-4f(1)=4 to find the c-value
-4 = 2/3(1+3)^(3/2) - 1/2 (1)^2 + C 4=23(1+3)3212(1)2+C
-4 = 2/3(4)^(3/2) - 1/2 + C 4=23(4)3212+C
-7/2 = 16/3 +C72=163+C
C=-53/6C=536

plug in the c-value into your integrated equation
f(x) = 2/3(x+3)^(3/2) - 1/2 x^2 + Cf(x)=23(x+3)3212x2+C
f(x) = 2/3(x+3)^(3/2) - 1/2 x^2 - 53/6 f(x)=23(x+3)3212x2536