What is #f(x) = int tanx dx# if #f(pi/8) = 0 #?
2 Answers
Explanation:
Use the definition of
#f(x)=inttanxdx=intsinx/cosxdx#
We can put this in the form
#f(x)=-int(-sinx)/cosxdx=-int(du)/u=-lnabsu+C=-lnabscosx+C#
We can use the initial condition
#0=-lnabscos(pi/8)+C#
#C=ln(cos(pi/8))#
We can find this using a form of the cosine double angle formula:
#cos(pi/8)=sqrt(1/2(1+cos(pi/4)))=sqrt(1/2(1+sqrt2/2))#
#=sqrt(1/2((2+sqrt2)/2))=sqrt(2+sqrt2)/2#
Thus,
#C=ln(sqrt(2+sqrt2)/2)#
and
#f(x)=-lnabscosx+ln(sqrt(2+sqrt2)/2)#
Explanation:
We shall evaluate
Let
Then