What is #f(x) = int tanx-secx dx# if #f(pi/4)=-1 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Shwetank Mauria Jan 7, 2018 #f(x)=-ln|cosx|-ln|secx+tanx|-ln(sqrt2/(sqrt2+1))-1# Explanation: As #inttanxdx=-ln|cosx|# and #intsecxdx=ln|secx+tanx|# #f(x)=int(tanx-secx)dx# = #-ln|cosx|-ln|secx+tanx|+c# Hence #f(pi/4)=-ln|1/sqrt2|-ln|sqrt2+1|+c=-1# or #ln(sqrt2)-ln(sqrt2+1)+c=-1# or #ln(sqrt2/(sqrt2+1))+c=-1# or #c=-ln(sqrt2/(sqrt2+1)))-1# and #f(x)=int(tanx-secx)dx# = #-ln|cosx|-ln|secx+tanx|-ln(sqrt2/(sqrt2+1))-1# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1510 views around the world You can reuse this answer Creative Commons License