What is f(x) = int tanx-secx dxf(x)=tanxsecxdx if f(pi/4)=-1 f(π4)=1?

1 Answer
Jan 7, 2018

f(x)=-ln|cosx|-ln|secx+tanx|-ln(sqrt2/(sqrt2+1))-1f(x)=ln|cosx|ln|secx+tanx|ln(22+1)1

Explanation:

As inttanxdx=-ln|cosx|tanxdx=ln|cosx| and intsecxdx=ln|secx+tanx|secxdx=ln|secx+tanx|

f(x)=int(tanx-secx)dxf(x)=(tanxsecx)dx

= -ln|cosx|-ln|secx+tanx|+cln|cosx|ln|secx+tanx|+c

Hence f(pi/4)=-ln|1/sqrt2|-ln|sqrt2+1|+c=-1f(π4)=ln12ln2+1+c=1

or ln(sqrt2)-ln(sqrt2+1)+c=-1ln(2)ln(2+1)+c=1

or ln(sqrt2/(sqrt2+1))+c=-1ln(22+1)+c=1

or c=-ln(sqrt2/(sqrt2+1)))-1c=ln(22+1))1

and f(x)=int(tanx-secx)dxf(x)=(tanxsecx)dx

= -ln|cosx|-ln|secx+tanx|-ln(sqrt2/(sqrt2+1))-1ln|cosx|ln|secx+tanx|ln(22+1)1