What is #f(x) = int (x-2)^2-5x+4 dx# if #f(2) = 1 #?

1 Answer
Feb 7, 2016

#f(x) = 1/3 (x-2)^3 -5/2 x^2 + 4x + 3 #

Explanation:

#intax^n dx =(ax^(n+1))/(n+1) + c #

is the standard integral , where c is the constant of integration

further #int(ax+b)^n dx = (ax+b)^(n+1)/(a(n+1)) + c#

These can be applied 'term by term' to the above integral

# f(x) = 1/3 (x-2)^3 - 5/2 x^2 + 4x + c #

using f(2) = 1 , allows c , to be found

# 1/3 (2-2)^3 - 5/2. 4 + 8 + c = 1#

0 - 10 + 8 + c = 1 → c = 3

# rArr f(x) = 1/3 (x-2)^3 - 5/2 x^2 + 4x + 3 #