What is f(x) = int (x^2-2x)(e^x-3x) dxf(x)=(x22x)(ex3x)dx if f(1 ) = 2 f(1)=2?

1 Answer

f(x)=(x^2-4x+4)*e^x-(3/4*x^4-2x^3)+3/4-ef(x)=(x24x+4)ex(34x42x3)+34e

Explanation:

f(x)=int(x^2-2x)*e^x*dx-int(3x^3-6x^2)*dxf(x)=(x22x)exdx(3x36x2)dx

= [(x^2-2x)-(2x-2)+2]*e^x-(3/4*x^4-2x^3)+C[(x22x)(2x2)+2]ex(34x42x3)+C

= (x^2-4x+4)*e^x-(3/4*x^4-2x^3)+C(x24x+4)ex(34x42x3)+C

After imposing f(1)=2f(1)=2 condition,

(1-4+4)*e-(3/4-2)+C=2(14+4)e(342)+C=2

C=3/4-eC=34e

Thus, f(x)=(x^2-4x+4)*e^x-(3/4*x^4-2x^3)+3/4-ef(x)=(x24x+4)ex(34x42x3)+34e

1) I integrated the right side of the equation.

2) I found C for f(1)=2f(1)=2 condition.