What is f(x) = int x^2-2xe^(x)dxf(x)=x22xexdx if f(0)=-2 f(0)=2?

1 Answer
Apr 13, 2017

f(x) = 1/3x^3 - 2e^x(x - 1) - 4f(x)=13x32ex(x1)4

Explanation:

Separate the integral.

f(x) = int x^2dx - int 2xe^xdxf(x)=x2dx2xexdx

The first integral is 1/3x^313x3.

f(x) = 1/3x^3 - int 2xe^xdxf(x)=13x32xexdx

We will use integration by parts for the last integral. We let u = 2xu=2x and dv = e^xdv=ex. Then du = 2dxdu=2dx and v= e^xv=ex.

int 2xe^xdx = 2x(e^x) - int 2e^x2xexdx=2x(ex)2ex

int2xe^xdx = 2xe^x - 2inte^x2xexdx=2xex2ex

int2xe^x = 2xe^x - 2e^x2xex=2xex2ex

int2xe^x = 2e^x(x - 1)2xex=2ex(x1)

We put the integral back together to find

f(x) = 1/3x^3 - 2e^x(x - 1) + Cf(x)=13x32ex(x1)+C

We must now find the value of CC. We know that when x = 0x=0, y= -2y=2, therefore:

-2 = 1/3(0)^3 - 2e^0(0 - 1) + C2=13(0)32e0(01)+C

-2 = 0 + 2 + C2=0+2+C

C = -4C=4

This means that f(x) = 1/3x^3 - 2e^x(x - 1) - 4f(x)=13x32ex(x1)4.

Hopefully this helps!