#f(x) = int x^2 sin(x^3) dx+ int 6 cos x dx# #= 1/3 int sin(x^3) times 3x^2 dx +6 sin x # # = 1/3 int sin(x^3) d(x^3) +6 sin x # # = -1/3 cos(x^3)+6 sin x +C#
We can find #C# from the given condition #f(pi/12)=-8#
#-8 = f(pi/12) = -1/3 cos((pi/12)^3)+6 sin (pi/12) +C#
so
#C = 1/3 cos((pi/12)^3)-6 sin (pi/12)-8 ~~-9.22#
and thus #f(x) = -1/3 cos((pi/12)^3)+6 sin (pi/12)-9.22#