What is f(x) = int x^2sinx^3- cot2x dxf(x)=x2sinx3cot2xdx if f(pi/8)=-1 f(π8)=1?

1 Answer
Sep 20, 2017

f (x) = -cosx^3/3 -(1/2)ln (sin 2x) -1 + cos (pi^3/512)/3 + ln sin (pi/4)/2f(x)=cosx33(12)ln(sin2x)1+cos(π3512)3+lnsin(π4)2

Explanation:

To solve this we must recall that int sin (u)du = -cos u +csin(u)du=cosu+c, where uu is some function of x. In this case our u is x^3x3, so du = 3x^2du=3x2. Thus our first part of the integral will yield -cos (x^3)/3 +ccos(x3)3+c; double checking this by differentiation, we do indeed receive 3x^2sinx^3/3 = x^2sinx^33x2sinx33=x2sinx3.

For our second part, recall that cot u = cos u/sin ucotu=cosusinu. Recall also that d/(du)sin u = (cos u) duddusinu=(cosu)du. If our u is 2x, then du is 2. Recall further that d/(du) ln u = (du)/uddulnu=duu. Using these facts...

int -cot2xdx = int -(cos2x)/(sin2x) = int -(du)/(2u) = -1/2 int (du)/u = -1/2 lnu + c = -(ln sin 2x)/2 +ccot2xdx=cos2xsin2x=du2u=12duu=12lnu+c=lnsin2x2+c

Thus our general f (x) is:

f (x) = -cosx^3/3 - ln (sin 2x)/2 + cf(x)=cosx33ln(sin2x)2+c

If f (pi/8) = -1f(π8)=1, then...

f (pi/8) = -cos (pi^3/512)/3 -ln sin (pi/4)/2 +c = -1-> c = -1 + cos (pi^3/512)/3 + ln sin (pi/4)/2 f(π8)=cos(π3512)3lnsin(π4)2+c=1c=1+cos(π3512)3+lnsin(π4)2

Thus...

f (x)=-cosx^3/3 -ln sin (2x)/2 -1 + cos (pi^3/512)/3 + ln sin (pi/4)/2f(x)=cosx33lnsin(2x)21+cos(π3512)3+lnsin(π4)2

This answer is somewhat lengthy yes, but note that -1 + cos (pi^3/512)/3 + ln sin (pi/4)/21+cos(π3512)3+lnsin(π4)2 is in fact constant and can be calculated; this calculation is left to the student as many professors would simply accept the current form.