What is #f(x) = int (x+3)^2-2x dx# if #f(1) = 0 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Øko Dec 19, 2017 #f(x)=1/3(x+3)^3-x^2-61/3# Explanation: #f(x)=int(x+3)^2-2xdx# Use #inth(x)+g(x)dx=inth(x)dx+intg(x)dx# #f(x)=int(x+3)^2dx-int2xdx# #f(x)=1/3(x+3)^3-x^2+C# Evaluate the constant of integration #0=1/3(1+3)^3-1^2+C# #0=1/3(4)^3-1+C# #0=64/3-3/3+C# #0=61/3+C# #C=-61/3# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1629 views around the world You can reuse this answer Creative Commons License