What is f(x) = int (x+3)^2+3x dxf(x)=(x+3)2+3xdx if f(5)=2 f(5)=2?

1 Answer
May 20, 2017

f(x) = 1/3 x^3 + 9/2 x^2 + 9x - 1183/6f(x)=13x3+92x2+9x11836

Explanation:

f(x) = int ((x+3)^2+3x)dxf(x)=((x+3)2+3x)dx

This integral could be solved by doing a uu substitution where u=x+3u=x+3, OR by expanding out the binomial in the parentheses.

I'll expand out the value in the parentheses for simplicity (and to use less extraneous variables).

f(x) = int(x^2+6x+9+3x)dxf(x)=(x2+6x+9+3x)dx

f(x) = int(x^2+9x+9)dxf(x)=(x2+9x+9)dx

f(x) = 1/3 x^3 + 9/2 x^2 + 9x +Cf(x)=13x3+92x2+9x+C

Plug in the initial condition and solve for CC (an arbitrary constant):
f(5) = 2f(5)=2

2 = 1/3 (5)^3 + 9/2 (5)^2 + 9(5) +C2=13(5)3+92(5)2+9(5)+C

I used a calculator in this step (not necessary)
C = (-1183)/6 approx -197.1667C=11836197.1667

Using this value for CC in the equation for f(x)f(x):

f(x) = 1/3 x^3 + 9/2 x^2 + 9x - 1183/6f(x)=13x3+92x2+9x11836