What is #f(x) = int x^3-2x+e^x dx# if #f(1) = 3 #?
1 Answer
Feb 14, 2016
Explanation:
We will make use of the following integration rules:
#intkf(x)dx=kintf(x)dx#
#intx^ndx=(x^(n+1))/(n+1)+C#
#inte^xdx=e^x+C#
We can integrate each term separately:
#intx^3dx=(x^(3+1))/(3+1)+C=x^4/4+C#
#int-2xdx=-2intxdx=-2(x^(1+1)/(1+1))+C=(-2x^2)/2+C=-x^2+C#
#inte^xdx=e^x+C#
Thus, our function is
#f(x)=x^4/4-x^2+e^x+C#
However, we can determine
#3=1^4/4-1^2+e^1+C#
#3=1/4-1+e+C#
#3=-3/4+e+C#
#15/4-e=C#
We can plug this back into our function:
#f(x)=x^4/4-x^2+e^x+15/4-e#