What is f(x) = int x+3xsqrt(x^2+1) dxf(x)=x+3xx2+1dx if f(2) = 7 f(2)=7?

1 Answer
Jul 2, 2016

\implies f(x) = x^2/2+(x^2+1)^{3/2} + 5(1- sqrt5)f(x)=x22+(x2+1)32+5(15)

Explanation:

f(x) = int x+3xsqrt(x^2+1) dxf(x)=x+3xx2+1dx

noting the pattern D ( alpha (x^2+1)^{3/2} ) = alpha 3/2 (x^2+1)^{1/2} 2x = 3 alpha x (x^2+1)^{1/2} D(α(x2+1)32)=α32(x2+1)122x=3αx(x2+1)12 so here alpha = 1α=1

\implies f(x) = x^2/2+(x^2+1)^{3/2} +Cf(x)=x22+(x2+1)32+C

7= 2+(5)^{3/2} +C implies C = 5(1- sqrt5)7=2+(5)32+CC=5(15)

\implies f(x) = x^2/2+(x^2+1)^{3/2} + 5(1- sqrt5)f(x)=x22+(x2+1)32+5(15)