What is f(x) = int x-sin2x+cosx dxf(x)=xsin2x+cosxdx if f(pi/2)=3 f(π2)=3?

2 Answers
Feb 4, 2017

f(x)=x^2/2+1/2cos(2x)+sin(x)+5/2-pi^2/8f(x)=x22+12cos(2x)+sin(x)+52π28

Explanation:

We will use the following rules:

  • intf(x)+-g(x)dx=intf(x)dx+-intg(x)dxf(x)±g(x)dx=f(x)dx±g(x)dx
  • intx^ndx=x^(n+1)/(n+1)+Cxndx=xn+1n+1+C
  • intsin(u)du=-cos(u)+Csin(u)du=cos(u)+C
  • intcos(u)du=sin(u)+Ccos(u)du=sin(u)+C

So:

f(x)=intx^1dx-intsin(2x)dx+intcos(x)dxf(x)=x1dxsin(2x)dx+cos(x)dx

The first and third can be found directly:

f(x)=x^2/2-intsin(2x)dx+sin(x)f(x)=x22sin(2x)dx+sin(x)

For the remaining integral, let u=2xu=2x so du=(2)dxdu=(2)dx. Then:

f(x)=x^2/2-1/2intsin(2x)(2)dx+sin(x)f(x)=x2212sin(2x)(2)dx+sin(x)

f(x)=x^2/2-1/2intsin(u)du+sin(x)f(x)=x2212sin(u)du+sin(x)

f(x)=x^2/2-1/2(-cos(u))+sin(x)+Cf(x)=x2212(cos(u))+sin(x)+C

f(x)=x^2/2+1/2cos(2x)+sin(x)+Cf(x)=x22+12cos(2x)+sin(x)+C

We can now solve for CC using f(pi/2)=3f(π2)=3:

3=(pi/2)^2/2+1/2cos(2*pi/2)+sin(pi/2)+C3=(π2)22+12cos(2π2)+sin(π2)+C

3=pi^2/8+1/2(-1)+1+C3=π28+12(1)+1+C

C=5/2-pi^2/8C=52π28

So:

f(x)=x^2/2+1/2cos(2x)+sin(x)+5/2-pi^2/8f(x)=x22+12cos(2x)+sin(x)+52π28

Feb 4, 2017

f(x)=x^2/2+1/2cos2x+sinx+(20-pi^2)/8f(x)=x22+12cos2x+sinx+20π28

Explanation:

f(x)=intx-sin2x+cosxdxf(x)=xsin2x+cosxdx
" "
f(x)=intxdx-intsin2xdx+intcosxdx+Cf(x)=xdxsin2xdx+cosxdx+C " "C Cis a constant
" "
f(x)=x^2/2-1/2intd(-cos2x)+intd(sinx)+Cf(x)=x2212d(cos2x)+d(sinx)+C
" "
f(x)=x^2/2+1/2cos2x+sinx+Cf(x)=x22+12cos2x+sinx+C
" "
" "
Le us find CC
" "
Given f(pi/2)=3f(π2)=3
" "
f(pi/2)=(pi/2)^2/2+1/2cos(2*pi/2)+sin(pi/2)+Cf(π2)=(π2)22+12cos(2π2)+sin(π2)+C
" "
Substituting f(pi/2)=3f(π2)=3
" "
rArr3=(pi)^2/8+1/2cospi+1+C3=(π)28+12cosπ+1+C
" "
rArr3=(pi)^2/8-1/2+1+C3=(π)2812+1+C
" "
rArr3=pi^2/8+1/2+C3=π28+12+C
" "
rArrC=3-1/2-pi^2/8C=312π28
" "
rArrC=24/8-4/8-pi^2/8C=24848π28
" "
rArrC=(20-pi^2)/8C=20π28
" "
" "
Therefore,f(x)=x^2/2+1/2cos2x+sinx+(20-pi^2)/8f(x)=x22+12cos2x+sinx+20π28