What is f(x) = int x-sin2x+cosx dxf(x)=∫x−sin2x+cosxdx if f(pi/2)=3 f(π2)=3?
2 Answers
Explanation:
We will use the following rules:
intf(x)+-g(x)dx=intf(x)dx+-intg(x)dx∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx intx^ndx=x^(n+1)/(n+1)+C∫xndx=xn+1n+1+C intsin(u)du=-cos(u)+C∫sin(u)du=−cos(u)+C intcos(u)du=sin(u)+C∫cos(u)du=sin(u)+C
So:
f(x)=intx^1dx-intsin(2x)dx+intcos(x)dxf(x)=∫x1dx−∫sin(2x)dx+∫cos(x)dx
The first and third can be found directly:
f(x)=x^2/2-intsin(2x)dx+sin(x)f(x)=x22−∫sin(2x)dx+sin(x)
For the remaining integral, let
f(x)=x^2/2-1/2intsin(2x)(2)dx+sin(x)f(x)=x22−12∫sin(2x)(2)dx+sin(x)
f(x)=x^2/2-1/2intsin(u)du+sin(x)f(x)=x22−12∫sin(u)du+sin(x)
f(x)=x^2/2-1/2(-cos(u))+sin(x)+Cf(x)=x22−12(−cos(u))+sin(x)+C
f(x)=x^2/2+1/2cos(2x)+sin(x)+Cf(x)=x22+12cos(2x)+sin(x)+C
We can now solve for
3=(pi/2)^2/2+1/2cos(2*pi/2)+sin(pi/2)+C3=(π2)22+12cos(2⋅π2)+sin(π2)+C
3=pi^2/8+1/2(-1)+1+C3=π28+12(−1)+1+C
C=5/2-pi^2/8C=52−π28
So:
f(x)=x^2/2+1/2cos(2x)+sin(x)+5/2-pi^2/8f(x)=x22+12cos(2x)+sin(x)+52−π28
Explanation:
Le us find
Given
Substituting
Therefore,