What is #f(x) = int x-sin2x+cosx dx# if #f(pi/2)=3 #?
2 Answers
Explanation:
We will use the following rules:
#intf(x)+-g(x)dx=intf(x)dx+-intg(x)dx# #intx^ndx=x^(n+1)/(n+1)+C# #intsin(u)du=-cos(u)+C# #intcos(u)du=sin(u)+C#
So:
#f(x)=intx^1dx-intsin(2x)dx+intcos(x)dx#
The first and third can be found directly:
#f(x)=x^2/2-intsin(2x)dx+sin(x)#
For the remaining integral, let
#f(x)=x^2/2-1/2intsin(2x)(2)dx+sin(x)#
#f(x)=x^2/2-1/2intsin(u)du+sin(x)#
#f(x)=x^2/2-1/2(-cos(u))+sin(x)+C#
#f(x)=x^2/2+1/2cos(2x)+sin(x)+C#
We can now solve for
#3=(pi/2)^2/2+1/2cos(2*pi/2)+sin(pi/2)+C#
#3=pi^2/8+1/2(-1)+1+C#
#C=5/2-pi^2/8#
So:
#f(x)=x^2/2+1/2cos(2x)+sin(x)+5/2-pi^2/8#
Explanation:
Le us find
Given
Substituting
Therefore,