What is f(x) = int x/sqrt(x^2+1) dxf(x)=∫x√x2+1dx if f(2) = 3 f(2)=3?
1 Answer
Mar 20, 2016
Explanation:
To integrate:
Let
This gives us:
f(x)=1/2int(2x)/sqrt(x^2+1)dx=1/2int1/sqrtudu=1/2intu^(-1/2)duf(x)=12∫2x√x2+1dx=12∫1√udu=12∫u−12du
Now, we integrate using the rule:
So, we have
f(x)=1/2u^(1/2)/(1/2)+C=1/2sqrtu*2+C=sqrtu+Cf(x)=12u1212+C=12√u⋅2+C=√u+C
f(x)=sqrt(x^2+1)+Cf(x)=√x2+1+C
Using the original condition
3=sqrt(2^2+1)+C3=√22+1+C
3=sqrt5+C3=√5+C
C=3-sqrt5C=3−√5
So, substituting this in, we see that
f(x)=sqrt(x^2+1)+3-sqrt5f(x)=√x2+1+3−√5