What is f(x) = int x/sqrt(x^2+1) dxf(x)=xx2+1dx if f(2) = 3 f(2)=3?

1 Answer
Mar 20, 2016

f(x)=sqrt(x^2+1)+3-sqrt5f(x)=x2+1+35

Explanation:

To integrate:

Let u=x^2+1u=x2+1 so du=2xdxdu=2xdx.

This gives us:

f(x)=1/2int(2x)/sqrt(x^2+1)dx=1/2int1/sqrtudu=1/2intu^(-1/2)duf(x)=122xx2+1dx=121udu=12u12du

Now, we integrate using the rule: intu^ndu=u^(n+1)/(n+1)undu=un+1n+1

So, we have

f(x)=1/2u^(1/2)/(1/2)+C=1/2sqrtu*2+C=sqrtu+Cf(x)=12u1212+C=12u2+C=u+C

f(x)=sqrt(x^2+1)+Cf(x)=x2+1+C

Using the original condition f(2)=3f(2)=3, we have

3=sqrt(2^2+1)+C3=22+1+C

3=sqrt5+C3=5+C

C=3-sqrt5C=35

So, substituting this in, we see that

f(x)=sqrt(x^2+1)+3-sqrt5f(x)=x2+1+35