What is #f(x) = int x-sqrt(x^2+1) dx# if #f(2) = 7 #?
2 Answers
Explanation:
#f(x)=intx-sqrt(x^2+1)color(white).dx#
Split up the integral:
#f(x)=intxcolor(white).dx-intsqrt(x^2+1)color(white).dx#
The first is easily done:
#f(x)=1/2x^2-intsqrt(x^2+1)color(white).dx#
Let
Solve the remaining integral with the substitution
#J=intsqrt(tan^2theta+1)(sec^2thetacolor(white).d theta)#
Note that
#J=intsec^3thetacolor(white).d theta#
This can be solved through integration by parts. Let:
#{(u=sectheta" "=>" "du=secthetatanthetacolor(white).d theta),(dv=sec^2thetacolor(white).d theta" "=>" "v=tantheta):}#
Therefore:
#J=secthetatantheta-intsecthetatan^2thetacolor(white).d theta#
Letting
#J=secthetatantheta-intsectheta(sec^2theta-1)color(white).d theta#
#J=secthetatantheta-intsec^3thetacolor(white).d theta+intsecthetacolor(white).d theta#
Note that the original integral is back on the right side, so we can replace it with
#J=secthetatantheta-J+lnabs(sectheta+tantheta)#
Adding
#J=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)#
Now returning to the original integral:
#f(x)=1/2x^2-J#
#f(x)=1/2x^2-1/2secthetatantheta-1/2lnabs(sectheta+tantheta)#
Now we can return to
#f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+C#
Solve for
#7=1/2(2^2)-1/2(2)sqrt(2^2+1)-1/2lnabs(sqrt(2^2+1)+2)+C#
#7=2-sqrt5-1/2ln(sqrt5+2)+C#
So:
#C=5+sqrt5+1/2ln(sqrt5+2)#
Finally:
#f(x)=1/2x^2-1/2xsqrt(x^2+1)-1/2lnabs(sqrt(x^2+1)+x)+5+sqrt5+1/2ln(sqrt5+2)#
Explanation:
ATTENTION: LONG ANSWER AHEAD!!
We are going to need trig substitution to solve
Let
#intsqrt((tan theta)^2 + 1)sec^2theta d theta#
#intsqrt(sec^2theta) sec^2theta d theta#
#intsec^3theta d theta#
We can use integration by parts to attack this problem. The formula is
Let
We are now faced with a problem. In the integral, we are left with
Reverse the substitutions by drawing a triangle and finding the correct ratios.
Now put this together with the
All we have to do now is solve for
Use a calculator to find the approximation
Hence,
Hopefully this helps!