What is f(x) = int xe^x-5x dxf(x)=xex5xdx if f(-1) = 5 f(1)=5?

1 Answer

f(x)=xe^x-e^x-5/2x^2+2e^(-1)+15/2f(x)=xexex52x2+2e1+152

Explanation:

The given

int (xe^x-5x) dx(xex5x)dx and f(-1)=5f(1)=5

Integration by parts for the int (xe^x) dx(xex)dx

Let u=xu=x and dv=e^x*dxdv=exdx and v=e^xv=ex and du=dxdu=dx

Using the integration by parts formula

int u*dv=uv-int v*duudv=uvvdu

int x*e^x*dx=xe^x-int e^x*dxxexdx=xexexdx

int x*e^x*dx=xe^x- e^xxexdx=xexex

Therefore

f(x)=int (xe^x-5x) dx=xe^x- e^x-5/2x^2+Cf(x)=(xex5x)dx=xexex52x2+C

f(x)=xe^x- e^x-5/2x^2+Cf(x)=xexex52x2+C

At f(-1)=5f(1)=5

f(-1)=5=-1*e^(-1)- e^(-1)-5/2(-1)^2+Cf(1)=5=1e1e152(1)2+C

5=-1*e^(-1)- e^(-1)-5/2(-1)^2+C5=1e1e152(1)2+C

5=-2*e^(-1)-5/2+C5=2e152+C

C=15/2+2e^(-1)C=152+2e1

finally

f(x)=xe^x- e^x-5/2x^2+15/2+2e^(-1)f(x)=xexex52x2+152+2e1

God bless....I hope the explanation is useful.