What is f(x) = int xe^x-x dxf(x)=xexxdx if f(-1) = 1 f(1)=1?

1 Answer
Jul 30, 2018

f(x) = 2/e+ e^x(x-1)+(3-x^2)/2f(x)=2e+ex(x1)+3x22

Explanation:

Using the fundamental theorem of calculus:

f(x) = 1+ int_(-1)^x (te^t-t)dtf(x)=1+x1(tett)dt

as the integral is linear:

f(x) = 1+ int_(-1)^x te^tdt- int_(-1)^x tdtf(x)=1+x1tetdtx1tdt

Solve the two integrals separately:

int_(-1)^x tdt = [t^2/2]_(-1)^x x1tdt=[t22]x1

int_(-1)^x tdt = x^2/2-1/2 x1tdt=x2212

and:

int_(-1)^x te^tdt = int_(-1)^x t d/dt(e^t) dtx1tetdt=x1tddt(et)dt

integrating by parts:

int_(-1)^x te^tdt = - int_(-1)^x e^t dt + [te^t]_( -1)^xx1tetdt=x1etdt+[tet]x1

int_(-1)^x te^tdt = - [e^t]_(-1)^x + xe^x+1/ex1tetdt=[et]x1+xex+1e

int_(-1)^x te^tdt = - e^x+1/e + xe^x+1/ex1tetdt=ex+1e+xex+1e

int_(-1)^x te^tdt = e^x(x-1)+2/ex1tetdt=ex(x1)+2e

Putting together the partial results:

f(x) = 1+ e^x(x-1)+2/e-x^2/2+1/2f(x)=1+ex(x1)+2ex22+12

f(x) = 2/e+ e^x(x-1)+(3-x^2)/2f(x)=2e+ex(x1)+3x22