Using the fundamental theorem of calculus:
f(x) = 1+ int_(-1)^x (te^t-t)dtf(x)=1+∫x−1(tet−t)dt
as the integral is linear:
f(x) = 1+ int_(-1)^x te^tdt- int_(-1)^x tdtf(x)=1+∫x−1tetdt−∫x−1tdt
Solve the two integrals separately:
int_(-1)^x tdt = [t^2/2]_(-1)^x ∫x−1tdt=[t22]x−1
int_(-1)^x tdt = x^2/2-1/2 ∫x−1tdt=x22−12
and:
int_(-1)^x te^tdt = int_(-1)^x t d/dt(e^t) dt∫x−1tetdt=∫x−1tddt(et)dt
integrating by parts:
int_(-1)^x te^tdt = - int_(-1)^x e^t dt + [te^t]_( -1)^x∫x−1tetdt=−∫x−1etdt+[tet]x−1
int_(-1)^x te^tdt = - [e^t]_(-1)^x + xe^x+1/e∫x−1tetdt=−[et]x−1+xex+1e
int_(-1)^x te^tdt = - e^x+1/e + xe^x+1/e∫x−1tetdt=−ex+1e+xex+1e
int_(-1)^x te^tdt = e^x(x-1)+2/e∫x−1tetdt=ex(x−1)+2e
Putting together the partial results:
f(x) = 1+ e^x(x-1)+2/e-x^2/2+1/2f(x)=1+ex(x−1)+2e−x22+12
f(x) = 2/e+ e^x(x-1)+(3-x^2)/2f(x)=2e+ex(x−1)+3−x22