What is #f(x) = int xsin2x+cos3x dx# if #f((7pi)/12)=14 #?

1 Answer
Dec 13, 2017

# -1/2cos2x+1/4sin2x+1/3sin3x+113/8+1/(3sqrt2)-sqrt3/4.#

Explanation:

We use the Rule of Integration by Parts (IBP) in the following

form:

IBP : #intuvdx=uintvdx-int((du)/dx*intvdx)dx.#

We let, #f(x)=int(xsin2x+cos3x)dx, i.e.,#

#f(x)=intxsin2xdx+intcos3xdx,#

#=I+(sin3x)/3,# where, #I=intxsin2xdx.#

Letting #u=x and v=sin2x,# we have,

#(du)/dx=1, and, intvdx=(-cos2x)/2.#

#:. I=x(-cos2x)/2-int{1*(-cos2x)/2}dx,#

#=-1/2cos2x+1/2(sin2x)/2.#

#rArr I=-1/2cos2x+1/4sin2x.#

Altogether, #f(x)=-1/2cos2x+1/4sin2x+1/3sin3x+C.#

But, it is given that, #f(7pi/12)=14.#

#:. -1/2cos(2*7pi/12)+1/4sin(2*7pi/12)+1/3sin(3*7pi/12)+C=14.#

#:.-1/2cos(7pi/6)+1/4sin(7pi/6)+1/3sin(7pi/4)+C=14, or#

#-1/2cos(pi+pi/6)+1/4sin(p.+pi/6)+1/3sin(2pi-pi/4)+C=14, i.e.,#

#-1/2(-cos(pi/6))+1/4(-sin(pi/6))+1/3(-sin(pi/4))+C=14.#

#:. -1/2(-sqrt3/2)+1/4(-1/2)+1/3(-1/sqrt2)+C=14.#

#:. C=113/8+1/(3sqrt2)-sqrt3/4.#

#rArr f(x)=-1/2cos2x+1/4sin2x+1/3sin3x+113/8+1/(3sqrt2)-sqrt3/4.#