What is f(x) = int xsin3x dxf(x)=xsin3xdx if f(pi/3) = -2 f(π3)=2?

1 Answer
Jan 23, 2016

f(x) = -x/3cos(3x) + 1/9sin(3x) - pi/9 f(x)=x3cos(3x)+19sin(3x)π9

Explanation:

Use integration by parts:

intudv = uv - intv du udv=uvvdu
u = x; dv = sin(3x) dx u=x;dv=sin(3x)dx
du = dx; intdv = intsin(3x) dx; v = -1/3 cos(3x) du=dx;dv=sin(3x)dx;v=13cos(3x)
intudv = -x/3cos(3x) + 1/3int cos(3x) du udv=x3cos(3x)+13cos(3x)du

f(x) = intudv = -x/3cos(3x) + 1/9sin(3x) + C f(x)=udv=x3cos(3x)+19sin(3x)+C

To calculate the constant, C use the fact that: f(pi/3) = -2; f(π3)=2;
f(pi/3) = -pi/9cos(pi) + cancel(1/3 sin(pi)) = -pi/9

f(x) = -x/3cos(3x) + 1/9sin(3x) - pi/9