What is f(x) = int xsin4x+2tanx dxf(x)=xsin4x+2tanxdx if f(pi/4)=1 f(π4)=1?

1 Answer
Jul 18, 2018

F(x)=1/16[sin4x-4xcos4x]+ln|sec^2x|+1-pi/16-ln2F(x)=116[sin4x4xcos4x]+lnsec2x+1π16ln2

Explanation:

Here ,

f(x)=intxsin4xdx+2int tanxdx=I_1+2I_2f(x)=xsin4xdx+2tanxdx=I1+2I2

Now,

I_1=intxsin4xdxI1=xsin4xdx

Using Integration by parts:

I_1=x*intsin4xdx-int(1*intsin4xdx)dxI1=xsin4xdx(1sin4xdx)dx

=>I_1=x*(-cos(4x)/4)-int(-cos(4x)/4)dxI1=x(cos(4x)4)(cos(4x)4)dx

=>I_1=-x/4cos4x+1/4intcos4xdxI1=x4cos4x+14cos4xdx

=>I_1=-x/4cos4x+1/4sin(4x)/4+c_1I1=x4cos4x+14sin(4x)4+c1

=>I_1=1/16[sin4x-4xcos4x]+c_1I1=116[sin4x4xcos4x]+c1

Again ,I_2=int tanxdx=ln|secx|+c_2I2=tanxdx=ln|secx|+c2

So, f(x)=I_1+2I_2f(x)=I1+2I2

=>F(x)=1/16[sin4x-4xcos4x]+2ln|secx|+c_1+c_2F(x)=116[sin4x4xcos4x]+2ln|secx|+c1+c2

f(x)=1/16[sin4x-4xcos4x]+ln|sec^2x|+C toC=c_1+c_2f(x)=116[sin4x4xcos4x]+lnsec2x+CC=c1+c2

So,

f(pi/4)=1/16[sinpi-picospi]+ln|sec^2(pi/4)|+C=1f(π4)=116[sinππcosπ]+lnsec2(π4)+C=1

=>1/16[0-pi(-1)]+ln|(sqrt2)^2|+C=1116[0π(1)]+ln(2)2+C=1

=>pi/16+ln2+C=1π16+ln2+C=1

=>C=1-pi/16-ln2C=1π16ln2

Hence ,

F(x)=1/16[sin4x-4xcos4x]+ln|sec^2x|+1-pi/16-ln2F(x)=116[sin4x4xcos4x]+lnsec2x+1π16ln2