Here ,
f(x)=intxsin4xdx+2int tanxdx=I_1+2I_2f(x)=∫xsin4xdx+2∫tanxdx=I1+2I2
Now,
I_1=intxsin4xdxI1=∫xsin4xdx
Using Integration by parts:
I_1=x*intsin4xdx-int(1*intsin4xdx)dxI1=x⋅∫sin4xdx−∫(1⋅∫sin4xdx)dx
=>I_1=x*(-cos(4x)/4)-int(-cos(4x)/4)dx⇒I1=x⋅(−cos(4x)4)−∫(−cos(4x)4)dx
=>I_1=-x/4cos4x+1/4intcos4xdx⇒I1=−x4cos4x+14∫cos4xdx
=>I_1=-x/4cos4x+1/4sin(4x)/4+c_1⇒I1=−x4cos4x+14sin(4x)4+c1
=>I_1=1/16[sin4x-4xcos4x]+c_1⇒I1=116[sin4x−4xcos4x]+c1
Again ,I_2=int tanxdx=ln|secx|+c_2I2=∫tanxdx=ln|secx|+c2
So, f(x)=I_1+2I_2f(x)=I1+2I2
=>F(x)=1/16[sin4x-4xcos4x]+2ln|secx|+c_1+c_2⇒F(x)=116[sin4x−4xcos4x]+2ln|secx|+c1+c2
f(x)=1/16[sin4x-4xcos4x]+ln|sec^2x|+C toC=c_1+c_2f(x)=116[sin4x−4xcos4x]+ln∣∣sec2x∣∣+C→C=c1+c2
So,
f(pi/4)=1/16[sinpi-picospi]+ln|sec^2(pi/4)|+C=1f(π4)=116[sinπ−πcosπ]+ln∣∣sec2(π4)∣∣+C=1
=>1/16[0-pi(-1)]+ln|(sqrt2)^2|+C=1⇒116[0−π(−1)]+ln∣∣(√2)2∣∣+C=1
=>pi/16+ln2+C=1⇒π16+ln2+C=1
=>C=1-pi/16-ln2⇒C=1−π16−ln2
Hence ,
F(x)=1/16[sin4x-4xcos4x]+ln|sec^2x|+1-pi/16-ln2F(x)=116[sin4x−4xcos4x]+ln∣∣sec2x∣∣+1−π16−ln2