What is f(x) = int xsinx^2 + tan^2x -cosx dxf(x)=xsinx2+tan2xcosxdx if f(0)=-1 f(0)=1?

1 Answer
Jun 17, 2016

f(x)=-1/2cosx^2+tanx-x-sinx+1/2.f(x)=12cosx2+tanxxsinx+12.

Explanation:

given that, f(x)=int[xsinx^2+tan^2x-cosx]dx=intxsinx^2dx+inttan^2xdx-intcosdx=I_1+I_2-I_3, say.f(x)=[xsinx2+tan2xcosx]dx=xsinx2dx+tan2xdxcosdx=I1+I2I3,say.

Then, I_1=intxsinx^2dx, =1/2intsinx^2*2xdx, =1/2intsintdt,I1=xsinx2dx,=12sinx22xdx,=12sintdt, [where x^2=tx2=t rArr 2xdx=dt2xdx=dt]
=1/2(-cost)=-1/2cosx^2.=12(cost)=12cosx2.

I_2=inttan^2xdx=int(sec^2x-1)dx=tanx-x.I2=tan2xdx=(sec2x1)dx=tanxx.

I_3=intcosxdx=sinx.I3=cosxdx=sinx.

f(x)=I_1+I_2-I_3=-1/2cosx^2+tanx-x-sinx+C.f(x)=I1+I2I3=12cosx2+tanxxsinx+C.

But, given that f(0)=-1.f(0)=1.

Hence, -1/2cos0+tan0-0-sin0+C=0.12cos0+tan00sin0+C=0. #:. C=1/2.

Finally,

f(x)=-1/2cosx^2+tanx-x-sinx+1/2.f(x)=12cosx2+tanxxsinx+12.