What is #f(x) = int xsinx + 2secxtanx +3cos4x dx# if #f(pi)=-2 #?

1 Answer
Jan 26, 2017

#f(x) = 3/4sin4x + 2secx - xcosx + sinx - pi#

Explanation:

#f(x) = intxsinxdx + int2secxtanxdx + int3cos4xdx#

#f(x) = intxsinxdx + 2intsecxtanxdx + 3intcos4xdx#

Let's integrate this in pieces.

The integration of #intxsinxdx#

This is a product, so we will use integration by parts. Let #u = x# and #dv = sinxdx#. Then #du = dx# and #v = -cosx#.

#int(u dv) = uv - int(v du)#

#intxsinxdx = x(-cosx) - int-cosxdx#

#intxsinxdx = -xcosx + intcosxdx#

#intxsinxdx = -xcosx + sinx#

The integration of #2intsecxtanxdx#

The integral #intsecxtanxdx# is known as being equal to #secx#. Hence, #2intsecxtanxdx = 2secx#

The integration of #3intcos4xdx#

This is a substitution problem. Let #u = 4x#. then #du = 4dx# and #dx = (du)/4#.

#3intcos4x= 3int cosu * (du)/4#

#3intcos4x = 3/4intcosudu#

#3intcos4x = 3/4sinu#

#3intcos4x = 3/4sin4x#

Putting it all together...

The function is:

#f(x) = 3/4sin4x + 2secx - xcosx + sinx + C#

And finally...

The last step is to find the value of #C#. We know that when #x= pi#, then #y = -2#.

#-2 = 3/4sin(4pi) + 2sec(pi) - picos(pi) + sin(pi) + C#

#-2 = 0 - 2 + pi + 0 + C#

#C = -pi#

The function therefore is #f(x) = 3/4sin4x + 2secx - xcosx + sinx - pi#.

Hopefully this helps!