What is f(x) = int xsinx dxf(x)=xsinxdx if f(pi/3) = -2 f(π3)=2?

1 Answer
Nov 2, 2016

f(x) = -xcosx + sinx - 2.34f(x)=xcosx+sinx2.34, approximately.

Explanation:

Use integration by parts.

Let u = xu=x and dv = sinxdxdv=sinxdx.

So, du = dxdu=dx and v = -cosxv=cosx

Now, use the integration by parts formula int(udv) = uv - int(vdu)(udv)=uv(vdu).

int(xsinx) = -xcosx - int(-cosx)(xsinx)=xcosx(cosx)

f(x) = -xcosx + sinx + Cf(x)=xcosx+sinx+C

Now, all we have to do is determine the value of CC.

We know that when x = pi/3, y = -2x=π3,y=2, so:

-2 = -pi/3cos(pi/3) + sin(pi/3) + C2=π3cos(π3)+sin(π3)+C

-2 + pi/3cos(pi/3) + sin(pi/3) = C2+π3cos(π3)+sin(π3)=C

Evaluating using a calculator, you should get C ~=-2.34C2.34

Hopefully this helps!