What is #sectheta+costheta# in terms of #sintheta#?
1 Answer
Dec 12, 2015
Recall:
To rewrite the expression in terms of
#sectheta+costheta#
#=1/costheta+costheta#
#=(1+costheta(costheta))/costheta#
#=(1+cos^2theta)/costheta#
#=(1+(1-sin^2theta))/costheta lArr cos^2theta=1-sin^2theta#
#=(2-sin^2theta)/costheta#