What is #sin^2theta/(1-tantheta) # in terms of #costheta#?

1 Answer
Mar 3, 2016

#costheta((1−cos^2theta))/(costheta-sqrt(1−cos^2theta))#

Explanation:

#sin^2theta/(1−tantheta)# can be written in term of #costheta#, using identities

#sin^2theta=1−cos^2theta# i.e. #sintheta=sqrt(1−cos^2theta)#

and #tantheta=sintheta/costheta#

As such #sin^2theta/(1−tantheta)#

= #(1−cos^2theta)/(1-sintheta/costheta)#

Multi[lying numerator and denominator by #costheta#, we get

#costheta((1−cos^2theta))/(costheta-sintheta)# or

#costheta((1−cos^2theta))/(costheta-sqrt(1−cos^2theta))#