What is #sin^2theta-tantheta # in terms of #costheta#?
1 Answer
Jan 15, 2016
Explanation:
Write in terms of
#=sin^2theta-sintheta/costheta#
Find a common denominator.
#=(sin^2thetacostheta)/costheta-sintheta/costheta#
Combine.
#=(sin^2thetacostheta-sintheta)/costheta#
Use the following identities:
#sin^2theta=1-cos^2theta# #sintheta=sqrt(1-cos^2theta)#
#=((1-cos^2theta)costheta-sqrt(1-cos^2theta))/costheta#