What is the average value of a function #f(x) = 1/x^2# on the interval [1,3]?
1 Answer
Apr 21, 2016
Explanation:
The average value of the function
#"average value"=1/(b-a)int_a^bf(x)dx#
Thus, the average value here is
#1/(3-1)int_1^3 1/x^2dx=1/2int_1^3x^-2dx#
To integrate this, use the rule
#intx^ndx=x^(n+1)/(n+1)+C#
Hence we see that
#intx^-2=x^(-2+1)/(-2+1)=x^-1/(-1)=-1/x#
So, when we evaluate
#1/2[-1/x]_1^3=1/2[-1/3-(-1/1)]=1/2(-1/3+1)#
#=1/3#