What is the average value of a function #sec^2x# on the interval #[pi/6, pi/4]#?

1 Answer
Jun 6, 2016

#(12-4sqrt3)/pi#

Explanation:

The average value of the function #f(x)# on the interval #[a,b]# is equivalent to

#1/(b-a)int_a^bf(x)dx#

Thus, the average value of #f(x)=sec^2x# on #[pi/6,pi/4]# is

#1/(pi/4-pi/6)int_(pi/6)^(pi/4)sec^2xdx#

Note that #intsec^2xdx=tanx+C#, since the derivative of #tanx# is #sec^2x#.

Also, note that #1/(pi/4-pi/6)=1/(pi/12)=12/pi#.

The average value then equals:

#1/(pi/4-pi/6)int_(pi/6)^(pi/4)sec^2xdx=12/pi[tanx]_(pi/6)^(pi/4)#

#=12/pi[tan(pi/4)-tan(pi/6)]=12/pi[1-sqrt3/3]=12/pi[(3-sqrt3)/3]#

#=4/pi[3-sqrt3]=(12-4sqrt3)/pi#