What is the average value of a function #y=secx tanx# on the interval #[0,pi/3]#?
1 Answer
Jun 5, 2016
Explanation:
The average value of the function
#1/(b-a)int_a^bf(x)dx#
Thus, here, the average value is
#1/(pi/3-0)int_0^(pi/3)secxtanxdx#
Note that
#=1/(pi/3)[secx]_0^(pi/3)=3/pi(sec(pi/3)-sec(0))=3/pi(2-1)=3/pi#