What is the average value of the function # f(x) = 4x ln (2x) # on the interval #[1,4]#?
1 Answer
Explanation:
The average value
#s=1/(b-a)int_a^bf(x)dx#
So here, the average value is equal to
#s=1/(4-1)int_1^4 4xln(2x)dx#
Let's first find this integral without the bounds.
#I=int4xln(2x)dx#
To do this integral, we'll need to use integration by parts. This technique takes the form
For the given integral, let
#{(u=ln(2x),=>,(du)/dx=1/x,=>,du=1/xdx),(dv=4xcolor(white).dx,=>,intdv=int4xcolor(white).dx,=>,v=2x^2):}#
So:
#I=uv-intvdu=2x^2ln(2x)-int2x^2 1/xdx#
Simplifying and integrating:
#I=2x^2ln(2x)-int2xcolor(white).dx=2x^2ln(2x)-x^2=x^2(2ln(2x)-1)#
This is without the constant go integration because we will use this to evaluate the integral. Returning to the average value, we see that
#s=1/(4-1)int_1^4 4xln(2x)dx=1/3[x^2(2ln(2x)-1)]_1^4#
Now evaluating in full:
#s=1/3 16(2ln(8)-1)-1/3 1(2ln(2)-1)#
#s=32/3ln(8)-16/3-2/3ln(2)+1/3#
Note that
#s=32ln(2)-2/3ln(2)-16/3+1/3#
#s=94/3ln(2)-5#