What is the derivative of 5^tanx5tanx?

1 Answer
Mar 3, 2018

=> (dy)/(dx) = 5^tanx * ln5 * sec^2 x dydx=5tanxln5sec2x

Explanation:

We are trying to find (dy)/(dx) dydx when y = 5^tanx y=5tanx

Taking natural logs on both sides...

=> ln y = ln 5^tanx lny=ln5tanx

Using log laws:

alpha log beta -= log beta ^ alpha αlogβlogβα

=> ln y =ln5 * tanx lny=ln5tanx

Differentiating implicitly:

=> 1/y * (dy)/(dx) = ln5 * sec^2 x 1ydydx=ln5sec2x

=> (dy)/(dx) = y ln5 * sec^2 x dydx=yln5sec2x

=> (dy)/(dx) = 5^tanx * ln5 * sec^2 x dydx=5tanxln5sec2x