What is the derivative of arcsin(1/x)?

1 Answer
Feb 16, 2018

(dy)/dx=(-1)/(xsqrt(x^2-1)

Explanation:

To find d/dx(arcsin(1/x))
arcsin(1/x)=sin^-1(1/x)
Let y=sin^=1(1/x)
Let u=1/x
(du)/dx=(-1)/x^2
y=sin^-1u
(dy)/dx=1/sqrt(1-u^2)(du)/dx
Substituting the values of u and (du)/dx
we have

(dy)/dx=1/sqrt(1-(1/x)^2)((-1)/x^2)

Simplifying

(dy)/dx=(-1)/(x^2sqrt((x^2-1)/x^2)
(dy)/dx=(-1)/(x^2sqrt(x^2-1)/x
(dy)/dx=(-x)/(x^2sqrt(x^2-1)

(dy)/dx=(-1)/(xsqrt(x^2-1)