What is the derivative of arctan [(1-x)/(1+x)]^(1/2)arctan[1−x1+x]12?
1 Answer
Explanation:
When tackling the derivative of inverse trig functions. I prefer to rearrange and use Implicit differentiation as I always get the inverse derivatives muddled up, and this way I do not need to remember the inverse derivatives. If you can remember the inverse derivatives then you use the chain rule.
Let
Differentiate Implicitly, and applying product rule:
2tanysec^2ydy/dx = ((1+x)(-1) - (1-x)(1))/(1+x)^2
:. 2tanysec^2ydy/dx = (-1-x-1+x)/(1+x)^2
:. 2tanysec^2ydy/dx = -2/(1+x)^2
:. tanysec^2ydy/dx = -1/(1+x)^2
:. sqrt((1-x)/(1+x))sec^2ydy/dx = -1/(1+x)^2 ..... [1]
Using the
(1-x)/(1+x)+1=sec^2y
:. sec^2y = ((1-x)+(1+x))/(1+x)
:. sec^2y = 2/(1+x)
Substituting into [1]