What is the derivative of arctan [(1-x)/(1+x)]^(1/2)arctan[1x1+x]12?

1 Answer
Dec 4, 2016

dy/dx = -1/(2(1+x)sqrt((1-x)/(1+x)))dydx=12(1+x)1x1+x

Explanation:

When tackling the derivative of inverse trig functions. I prefer to rearrange and use Implicit differentiation as I always get the inverse derivatives muddled up, and this way I do not need to remember the inverse derivatives. If you can remember the inverse derivatives then you use the chain rule.

Let y=arctan sqrt((1-x)/(1+x)) <=> tany=sqrt((1-x)/(1+x)) y=arctan1x1+xtany=1x1+x
:. tan^2y=(1-x)/(1+x)

Differentiate Implicitly, and applying product rule:

2tanysec^2ydy/dx = ((1+x)(-1) - (1-x)(1))/(1+x)^2
:. 2tanysec^2ydy/dx = (-1-x-1+x)/(1+x)^2
:. 2tanysec^2ydy/dx = -2/(1+x)^2
:. tanysec^2ydy/dx = -1/(1+x)^2
:. sqrt((1-x)/(1+x))sec^2ydy/dx = -1/(1+x)^2 ..... [1]

Using the sec"/"tan identity;

(1-x)/(1+x)+1=sec^2y
:. sec^2y = ((1-x)+(1+x))/(1+x)
:. sec^2y = 2/(1+x)

Substituting into [1]
sqrt((1-x)/(1+x))(2/(1+x))dy/dx = -1/(1+x)^2
:. 2sqrt((1-x)/(1+x))dy/dx = -1/(1+x)
:. dy/dx = -1/(2(1+x)sqrt((1-x)/(1+x)))