What is the derivative of arctan(x)/(1+x^2)arctan(x)1+x2?

1 Answer
Feb 9, 2017

y' = (1 - 2xarctanx)/(1 + x^2)^2

Explanation:

Let first derive d/dxarctanx.

y= arctanx -> tany = x

If we differentiate implicitly, we get

sec^2y(dy/dx) = 1

dy/dx = 1/sec^2y

We now use the pythagorean identity tan^2theta + 1 = sec^2theta:

dy/dx = 1/(1 + tan^2y)

Since x = tany:

dy/dx = 1/(1 + x^2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let's now use the quotient rule to differentiate the entire expression.

y' = (1/(1 + x^2) * (1 + x^2) - 2xarctanx)/(1 + x^2)^2

y' = (1 - 2xarctanx)/(1 + x^2)^2

Hopefully this helps!