What is the derivative of f(t) = (tcos^2t , t^2-t sect ) ?

1 Answer
Nov 24, 2017

(dy)/(dx)=(2t-sect-tsect tant)/(cos^2t-tsin2t)

Explanation:

When a functiion is given in parametric form such as f(t)=(x(t),y(t)), its dervative is given by (dy)/(dx)=((dy)/(dt))/((dx)/(dt))

Here we have y(t)=t^2-tsect hence (dy)/(dt)=2t-sect-tsect tant

and x(t)=tcos^2t hence (dx)/(dt)=cos^2t+txx2costxx(-sint)

= cos^2t-tsin2t

Hence (dy)/(dx)=(2t-sect-tsect tant)/(cos^2t-tsin2t)