What is the derivative of f(t)=(tcos2t,t2tsect)?

1 Answer
Nov 24, 2017

dydx=2tsecttsecttantcos2ttsin2t

Explanation:

When a functiion is given in parametric form such as f(t)=(x(t),y(t)), its dervative is given by dydx=dydtdxdt

Here we have y(t)=t2tsect hence dydt=2tsecttsecttant

and x(t)=tcos2t hence dxdt=cos2t+t×2cost×(sint)

= cos2ttsin2t

Hence dydx=2tsecttsecttantcos2ttsin2t