What is the derivative of f(x)=-3sin(6x)*cos^2(3x)f(x)=3sin(6x)cos2(3x)?

1 Answer
Jan 2, 2016

f'(x)=18cos(3x)(sin(3x)sin(6x)-cos(3x)cos(6x))

Explanation:

Use product rule.

f'(x)=cos^2(3x)d/dx(-3sin(6x))-3sin(6x)d/dx(cos^2(3x))

Find each derivative separately, using chain rule each time.

d/dx(-3sin(6x))=-3cos(6x)*6=-18cos(6x)

This one requires you to deal with the exponent first, then the cosine function.

d/dx(cos^2(3x))=2cos(3x)d/dx(cos(3x))

=2cos(3x) * -sin(3x) * 3=-6sin(3x)cos(3x)

Plug these back in to find f'(x).

f'(x)=cos^2(3x) * -18cos(6x)-3sin(6x) * -6sin(3x)cos(3x)

=18cos(3x)(sin(3x)sin(6x)-cos(3x)cos(6x))