What is the derivative of f(x)=-3sin(6x)*cos^2(3x)f(x)=−3sin(6x)⋅cos2(3x)?
1 Answer
Jan 2, 2016
Explanation:
Use product rule.
f'(x)=cos^2(3x)d/dx(-3sin(6x))-3sin(6x)d/dx(cos^2(3x))
Find each derivative separately, using chain rule each time.
d/dx(-3sin(6x))=-3cos(6x)*6=-18cos(6x)
This one requires you to deal with the exponent first, then the cosine function.
d/dx(cos^2(3x))=2cos(3x)d/dx(cos(3x))
=2cos(3x) * -sin(3x) * 3=-6sin(3x)cos(3x)
Plug these back in to find
f'(x)=cos^2(3x) * -18cos(6x)-3sin(6x) * -6sin(3x)cos(3x)
=18cos(3x)(sin(3x)sin(6x)-cos(3x)cos(6x))