What is the derivative of f(x)=cos^2x*cos2xf(x)=cos2xcos2x?

2 Answers
Mar 25, 2018

f'(x)=-2sin(2x)cos^2(x)-2cos(2x)sin(2x)

Explanation:

Recall that the derivative of two multiplied functions, f(x)=a(x)b(x), is given by f'(x)=a(x)b'(x)+b(x)a'(x)

Here, we see

a(x)=cos^2(x)

a'(x)=2cos(x)*d/dxcos(x)=-2cosxsinx=-sin(2x) (From the identity sin(2x)=2sinxcosx)

b(x)=cos(2x)

b'(x)=-sin(2x)*d/dx(2x)=-2sin(2x)

Thus,

f'(x)=-2sin(2x)cos^2(x)-2cos(2x)sin(2x)

Mar 25, 2018

f'(x)=-8cos^3(x)sin(x)+2cos(x)sin(x)

Explanation:

We have f(x)=cos^2(x)cos(2x)

Let's use the trigonometric identity:

cos^2(x)=(1+cos(2x))/2rArrcos(2x)=2cos^2(x)-1

so we can express the trig functions in terms of a common angle x

rArrf(x)=cos^2(x)(2cos^2(x)-1)

rArrf(x)=2cos^4(x)-cos^2(x)

Now we can take the derivative using the chain rule:

rArrf'(x)=8cos^3(x)(-sin(x))-2cos(x)(-sin(x))

rArrf'(x)=-8cos^3(x)sin(x)+2cos(x)sin(x)