What is the derivative of f(x)=cosx1+sin2x?

1 Answer
Oct 28, 2015

(dydx)=sin{x}1+sin2{x}2cos2{x}sin{x}(1+sin2{x})2

Explanation:

Standard form reference: if y=uv then dydx=v(dudx)u(dvdx)v2

Considering section at a time

Let u=cos(x)dudx=sin(x)
Let v=1+sin2(x)dvdx=2sin(x)cos(x)

Thus dydx=(1+sin2{x})(sin{x})(cos{x})(2sin{x}cos{x})(1+sin2{x})2

from which you derive

(dydx)=sin{x}1+sin2{x}2cos2{x}sin{x}(1+sin2{x})2