What is the derivative of f(x)=secx2cos2x?

1 Answer
Nov 15, 2015

2sec2x2(cos2xsinx2xcosxsinxcosx2)

Explanation:

I understood y=(secx2)(cos2x). Is it?

dfdx=ddx(cos2xcosx2)=ddx(cos2x)cosx2cos2xddx(cosx2)cos2x2

=2cosxddx(cosx)cosx2cos2x(sinx2)ddx(x2)cos2x2

=2cosx(sinx)cosx2cos2x(sinx2)2xcos2x2

=2sec2x2(cosxsinxcosx2+cos2xsinx2x)