What is the derivative of f(x)=sin2x+cosxsinxcos2x?

1 Answer
Feb 13, 2018

the derivative of
sin2x+cosxsinxcos2x is
sinxcosx(sinxcosx)(1+2sinx)(sinxcos2x)2

Explanation:

Given:
f(x)=sin2x+cosxsinxcos2x
Let u=sin2x+cosx
Then,
dudx=2sinxcosxsinx
Let v=sinxcos2x
Then,
dvdx=cosx2cosx(sinx)=cosx+2cosxsinx
Rearranging
dvdx=2sinxcosx+cosx

We have,
ddx(uv)=vdudxudvdxv2
Substituting
ddx(sin2x+cosxsinxcos2x)=(sinxcos2x)(2sinxcosxsinx)(sin2x+cosx)(2sinxcosx+cosx)(sinxcos2x)2

Simplifying
(2sin2xcosx2sinxcos3xsin2x+cos2xsinx)(2sin3xcosx+2sinxcos2x+sin2xcosx+cos2x)(sinxcos2x)2

(2sin2xcosx2sinxcos3xsin2x+cos2xsinx2sin3xcosx2sinxcos2xsin2xcosxcos2x)(sinxcos2x)2

sin2xcosxcos2xsinx(sin2x+cos2x)2sinx(cos2x+sin2x)(sinxcos2x)2

Knowing that cos2x+sin2x=1=sin2x+cos2x

sin2xcosxcos2xsinx12sinx(1)(sinxcos2x)2
sinxcosx(sinxcosx)12sinx(sinxcos2x)2
sinxcosx(sinxcosx)(1+2sinx)(sinxcos2x)2
Thus, the derivative of
sin2x+cosxsinxcos2x is
sinxcosx(sinxcosx)(1+2sinx)(sinxcos2x)2