What is the derivative of f(x) = xcos^3(x^2)sin(x^2)f(x)=xcos3(x2)sin(x2)?

1 Answer
Oct 20, 2016

(df)/(dx)=cos^3(x^2)sin(x^2)-6x^2cos^2(x^2)sin^2(x^2)+2x^2cos^4(x^2)dfdx=cos3(x2)sin(x2)6x2cos2(x2)sin2(x2)+2x2cos4(x2)

Explanation:

We can use here product formula for three terms i.e.

if f(x)=p(x)*q(x)*r(x)f(x)=p(x)q(x)r(x), then

f'(x)= p'(x)*q(x)*r(x)+p(x)*q'(x)*r(x)+p(x)*q(x)*r'(x)

Hence for given function f(x)=xcos^3(x^2)sin(x^2)

(df)/(dx)=1xxcos^3(x^2)sin(x^2)+x*(3cos^2(x^2)xx(-sin(x^2))xx2x)*sin(x^2)+xcos^3(x^2)xx(cos(x^2)xx2x)

= cos^3(x^2)sin(x^2)-6x^2cos^2(x^2)sin^2(x^2)+2x^2cos^4(x^2)