What is the derivative of inverse tangent of 2x?

2 Answers
Apr 14, 2015

dy/(dx)=2/(1+4x^2)dydx=21+4x2

Solution
Let

y=tan^(-1)2xy=tan12x

tany=2xtany=2x

Differentiating both side with respect to 'x'

d/dx(tany)=d/dx(2x)ddx(tany)=ddx(2x)

=>sec^2y(dy/(dx))=2sec2y(dydx)=2

=>dy/(dx)=2/(sec^2y)dydx=2sec2y

=>dy/(dx)=2/(1+tan^2y)dydx=21+tan2y

Now, as
tany=2xtany=2x

tan^2y=(2x)^2tan2y=(2x)2

tan^2y=4x^2tan2y=4x2

So,

=>dy/(dx)=2/(1+4x^2)dydx=21+4x2

Apr 14, 2015

dy/(dx)=2/(1+4x^2)#

Solution

Let

y=tan^(-1)2xy=tan12x

Differentiating both side with respect to 'x'

dy/dx=d/dx(tan^(-1)2x)dydx=ddx(tan12x)

dy/dx=1/(1+(2x)^2)d/dx(2x)dydx=11+(2x)2ddx(2x)

dy/dx=1/(1+(2x)^2).2d/dx(x)dydx=11+(2x)2.2ddx(x)

dy/dx=1/(1+(2x)^2).2dx/dxdydx=11+(2x)2.2dxdx

dy/dx=1/(1+(2x)^2).2dydx=11+(2x)2.2

dy/(dx)=2/(1+4x^2)dydx=21+4x2