What is the derivative of (sinx)^2*(cosx)^2?

2 Answers
Dec 29, 2016

y'=2sinxcosx(cos^2x-sin^2x)

Explanation:

You have to use the product rule to differentiate this expression.

y=(sin x)^2xx(cos x)^2

u=(sin x)^2, v= (cos x)^2

u' = 2(sinx)^1cosx=2sinxcosx

v'=2(cosx)-sinx=-2cosxsinx

y'=vu'+uv'

y'=2sinxcos^3x-2cosxsin^3x=2sinxcosx(cos^2x-sin^2x)

Dec 30, 2016

d/dx sin^2xcos^2x = 1/2sin4x

Explanation:

Another approach is to simply the expression using the identity:

sin 2theta = 2sinthetacostheta

before starting, which yields a simpler, (but identical) form of the solution:

d/dx sin^2xcos^2x = d/dx (sinxcosx)^2
" "= d/dx (1/2sin2x)^2
" "= 1/4d/dx sin^2 2x
" "= 1/4*2sin2x*cos2x*2 \ \ \ (by the chain rule)
" "= 1/2sin4x