What is the derivative of sinx(tanx)sinx(tanx)?
1 Answer
Jul 9, 2016
Explanation:
Differentiate using the
color(blue)"product rule"product rule
g(x)=sinxrArrg'(x)=cosx
h(x)=tanxrArrh'(x)=sec^2x
"--------------------------------------------------"
Substitute these values into f'(x)
rArrf'(x)=sinxsec^2x+tanxcosx Now
tanxcosx=sinx/cancel(cosx)xxcancel(cosx)=sinx
rArrf'(x)=sinxsec^2x+sinx=sinx(sec^2x+1)