What is the derivative of sinx(tanx)sinx(tanx)?

1 Answer
Jul 9, 2016

sinx(sec^2x+1)sinx(sec2x+1)

Explanation:

Differentiate using the color(blue)"product rule"product rule

color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)" then" f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))

g(x)=sinxrArrg'(x)=cosx

h(x)=tanxrArrh'(x)=sec^2x
"--------------------------------------------------"
Substitute these values into f'(x)

rArrf'(x)=sinxsec^2x+tanxcosx

Now tanxcosx=sinx/cancel(cosx)xxcancel(cosx)=sinx

rArrf'(x)=sinxsec^2x+sinx=sinx(sec^2x+1)