What is the derivative of tan(4x)tan(5x)?

1 Answer
Apr 24, 2016

We have the function

y=tan(4x)tan(5x)

Take the natural logarithm of both sides:

ln(y)=ln(tan(4x)tan(5x))

Using the rule ln(ab)=bln(a), rewrite the right hand side:

ln(y)=tan(5x)ln(tan(4x))

Differentiate both sides. The chain rule will be in effect on the left hand side, and primarily we will use the product rule on the right hand side.

dydx(1y)=ln(tan(4x))ddxtan(5x)+tan(5x)ddxln(tan(4x))

Differentiate each, again using the chain rule.

dydx(1y)=5sec2(5x)ln(tan(4x))+tan(5x)(4sec2(4x)tan(4x))

Multiply this all by y, which equals tan(4x)tan(5x), to solve for dydx.

dydx=tan(4x)tan(5x)(5sec2(5x)ln(tan(4x))+4sec2(4x)tan(5x)tan(4x))