What is the derivative of tan(4x)tan(5x)?
1 Answer
Apr 24, 2016
We have the function
y=tan(4x)tan(5x)
Take the natural logarithm of both sides:
ln(y)=ln(tan(4x)tan(5x))
Using the rule
ln(y)=tan(5x)⋅ln(tan(4x))
Differentiate both sides. The chain rule will be in effect on the left hand side, and primarily we will use the product rule on the right hand side.
dydx(1y)=ln(tan(4x))ddxtan(5x)+tan(5x)ddxln(tan(4x))
Differentiate each, again using the chain rule.
dydx(1y)=5sec2(5x)ln(tan(4x))+tan(5x)(4sec2(4x)tan(4x))
Multiply this all by
dydx=tan(4x)tan(5x)(5sec2(5x)ln(tan(4x))+4sec2(4x)tan(5x)tan(4x))