What is the derivative of tan5(x)?

1 Answer
Mar 21, 2018

y=tan5x=(tanx)5dydx=5(tanx)4ddx(tanx)
dydx=5tan4xsec2x

Explanation:

Let,
y=tan5x=(tanx)5
We take,
y=u5, where, u=tanx
dydu=5u4anddudx=sec2x
Applying chain rule
dydx=dydududx
dydx=5u4sec2x
dydx=5(tanx)4sec2x
dydx=5tan4xsec2x