What is the derivative of tan(5x)^(1/2)?

1 Answer
Oct 27, 2016

(dy)/(dx)=sqrt5/2(x^(-1/2))sec^2(5x)^(1/2)

Explanation:

y=tan(5x)^(1/2)

u=(5x)^(1/2)=5^(1/2)x^(1/2)

=>(dy)/(du)=5^(1/2)1/2x^(-1/2)=sqrt5/2(x^(-1/2))

y=tanu=>(dy)/(du)=sec^2u

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

:.(dy)/(dx)=sec^2uxxsqrt5/2(x^(-1/2))

:.(dy)/(dx)=sqrt5/2(x^(-1/2))sec^2(5x)^(1/2)